Glary Power Technology 1/2 Brick DC/DC Converters

PH 310W/50A

The PH series provides up to 310W/50A outputs with industry standard half brick package. The efficient Non-SR technology combining with ultra low leakage inductance magnetic gives converters "SR-like" conversion efficiency and high reliability, the single component side board designed with Sink-Plate technology eliminate the hot spot gives converter better thermal performance. Modules are designed for Telecom, Servers, Networking equipments and other applications that use a 24V or 48V (36~75V) input bus.

Par	t Number *	Maximum	n Input	Maximum	Output	Efficiency
PH48	280ABCD-EF	36V~75V	355W	28V/11A	310W	90%
PH48	240ABCD-EF	36V~75V	291W	24V/11A	252W	88%
PH48	150ABCD-EF	36V~75V	288W	15V/17A	255W	89%
PH48				12V/21A		88%
PH48	050ABCD-EF	36V~75V	296W	5.0V/50A	250W	85%

High efficiency	90%@28V/11A		
	89%@15V/17A		
	88%@12V/21A		
 High power density 	144W/in ³		
Low profile	0.36"(9.1mm)		
Standard footprint	2.30"×2.40"		
 Operation temperature 	40°C~105°C		
•Sink-Plate (SP) flexible thermal managing capability (see drawing)			

Part Number *	Maximum	Input	Maximum	Output	Efficiency
			28V/11A		,
PH24240ABCD-EF	18V~36V	291W	24V/11A	252W	87%
PH24150ABCD-EF	18V~36V	288W	15V/17A	255W	89%
PH24120ABCD-EF	18V~36V	291W	12V/21A	252W	87%
PH24050ABCD-EF	18V~36V	296W	5.0V/50A	250W	85%

* Options for PH Series are listed as follows:

D (Base-Plate/Module Thickness):

A (Enable Logic):

B (Pin Dimension (Pin Dimension): (Standoff Height):

P: Positive N: Negative 0: 0.12"

0: 0.02"

1: 0.16°

1: 0.08"

2: 0.20"

M: 1.0mm Metal Plate/0.34"

A: 3.0mm Sink-Plate/0.42"

3: 0.24"

B: 5.0mm Sink-Plate/0.50"

E: 1.0mm Metal Plate with Metal Enclosure/0.34"

00 to 99 for output current rating

EF (Output): Example:

PH48120N00E-21 is a *PH* series half brick 48V to 12V/21A dc/dc converter with negative control logic, 0.12" pin length, 0.02" of standoff height and 1.0mm Metal Plate with Metal Enclosure. The total height of this module is 0.02"+0.34"=0.36"

ABSOLUTE MAXIMUM RATINGS					
Temperature	Operation	-40°C to +120°C			
	Storage	-55°C to +125°C			
Input Voltage Range	Operation:				
	24V Models	-0.5V to +40Vdc			
	48V Models	-0.5V to +80Vdc			
	Transient (100mS):				
	24V Models	50V Maximum			
	48V Models	100V Maximum			
Isolation Voltage	Input to Output	2.0KV Minimum			
	Input to Case	1.0KV Minimum			
	Output to Case	1.0KV Minimum			
Remote Control Voltage		-0.5V to +12Vdc			

Remote Control Voltage		-0.5V to +12Vdc				
GENERAL SPECIFICATIONS						
Conversion Efficiency	Typical	See table				
Switching Frequency	Typical	360KHz				
MTBF	Bellcore	4.56×10 ⁶ hrs @GB.				
OTP	Internal	115°C				
Weight		1.9 oz or 3.2 oz				
Size		2.30"×2.40"×0.36"				
CONTROL FUNCTIONS						

CONTROL FU	NICTIONS	
CONTROL FU	NCHONS	
Remote Control	Logic High	+3.0V t0 +6.5V
	Logic Low	0V to +1.0V
Input Current of Remote Control Pin	U	-0.5mA ~ +1.5mA

INPUT SPECIFICATIONS				
Operation Voltage Range	24V Models	+18V to +36Vdc		
	48V Models	+36V to +75Vdc		
Reflected Ripple Current	$L_{EXT} = 10uH$	20mA Max		
Power ON Voltage Ranges	24V Models	+17.5V to +17.9Vdc		
	48V Models	+35.0V to +35.8Vdc		
Power OFF Voltage Ranges	24V Models	+17.0V to +17.4Vdc		
	48V Models	+34.0V to +34.8Vdc		
Off State Input Current	V_{NOM}	6mA Max		
Latch-State Input Current	V_{NOM}	8mA Max		
Input Capacitance	24V Models	33.0uF Max		
	48V Models	6.8uF Max		

OUTPUT SF	PECIFICATIONS	
Voltage Accuracy	Typical	±1%
Line Regulation	Full Input Range	±0.2%
Load Regulation	10%~100%	±0.2%
Temperature Drift	-40°C ~100°C	±0.02%/°C
Output Tolerance Band	All Conditions	±3%
Ripple & Noise (20MHz)	Peak-Peak (RMS)	3% (1%) V _o
Over Voltage Protection	V _{NOM} , 10% Load	115~130 %Vo
Output Current Limits	V_{NOM}	105%~125%
Voltage Trim	V _{NOM} , 10% Load	±10%
Input Ripple Rejection (<1KHz)	V _{NOM} , Full Load	-50dB
Step Load (2.5A/uS)	50%~75% Load	300mV/500uS
Start-Up Delay Time	V _{NOM} , Full Load	20mS/250mS

Efficiency Plot of CPH48280ABCD-11

NOTE

- 20MHz bandwidth current probe measured without an external filter.
- Output ripple and noise is measured by using the proposed test method of Glary Power Technology Co. Ltd.
- 3. Input fusing is required and recommended to base on surge current and maximum input current.
- 4. Case and base-plate should be connected to AC ground to maintain good EMC performance.
- 5. Case and base-plate should be inaccessible to prevent the damage from highly operating temperature.
- Contact Glary Power Technology for non-standard inquiry. 6.